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New Results in Dielectric-Loaded
Resonators

KAWTHAR A. ZAKI, SENIOR MEMBER, IEEE, AND CHUNMING CHEN, STUDENT MEMBER, IEEE

Abstract — Analysis of cylindrical dielectric-loaded resonators is re-
viewed. The fields within the dielectric-loaded region are postulated as the
superposition of hybrid, TE, or TM modes of the infinite dielectric-loaded
waveguide, while the fields in the end regions of the resonators are
described by the superposition of the normal modes of a homogeneously
filled waveguide. Numerical results are presented which reveal that accu-
rate representation of the fields in the resonant structure generally require
several modes. Hence, the resonant modes cannot be correlated directly
with single waveguide modes. A new method for mode identification is
proposed. For a wide range of parameters, the resonant frequencies, mode
charts, field expansion coefficients, field intensity, and distributions are

presented. Excellent agreement of the mode charts with resonant frequency -

measurement results are obtained.

1. INTRODUCTION

HE PURPOSE OF this paper is to review and extend

‘the analysis method described in [1]-[3], and present
new numerical results and extensive measured data for the
verification of the analysis.

The continuing interest in dielectric resonators for appli-
cations in microwave and millimeter-wave systems
prompted many researchers to develop and refine analysis
methods for the design of such resonators. Modes in
isolated resonators with no metallic boundaries have been
analyzed extensively using the approximate technique of
magnetic wall on all or portions of the resonator’s surface
[4], [7]- This technique is valid in the limit as the relative
dielectric constant of the material approaches infinity. For
waveguides and resonators with metallic boundaries, exact
closed-form solution methods have been presented for
certain geometries [2], [3]; variational and perturbation
techniques [8]-[10] have also been used extensively
whenever the geometry did not allow closed-form solutions
to be developed. Other analysis methods based on field
expansions in term of eigenmodes of the resonators and
enclosures [1], [11]-[16] and on surface integral equations
[17]-[18] have recently been developed.

The method of analysis for accurate determination of
the resonant frequencies and field distributions within a
circular cylindrical dielectric resonator shielded by a coaxial
circular conducting boundary is summarized in Section II.
Symmetry conditions are employed to reduce the size of
the determinant whose roots are the resonant frequencies
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by a factor of two. Since the fields in the resonator are
expressed as a linear combination of several eigenmodes of
the dielectric-loaded waveguide, and no single mode is
dominant, designation of the resonant frequencies of the
structure cannot be directly correlated with any single
waveguide mode. A method for the designation of the
resonant frequencies is proposed in Section IIL

Extensive numerical results showing the convergence of
the solution and “mode charts” for typical resonators are
included in Section IV. Mode charts are verified exten-
sively by measurements on several experimental reso-
nators. Variation of the mode coefficients in the dielectric-
loaded waveguide and end sections as a function of the
resonator parameters are presented.

Section V presents results of several representative plots
of the resonator’s field distribution and intensity.

II. METHOD OF ANALYSIS

The resonator structure is shown in Fig. 1. The metallic
cavity of radius b and length L has perfectly conducting
walls. The dielectric cylinder of radius a, relative dielectric
constant €,;, and length / is placed symmetrically within
the cavity, and. is supported by concentric rings of a low
relative dielectric constant material ¢,, (e.g., foam). This
support can be conveniently made as two half-cups, be-
tween which the resonator is enclosed. Alternatively, the
end supports can be of different dielectric constant material

€,3. Extensive analysis and numerical results of this struc-
ture in the special case of /= L were presented in [3).
Following the reasoning by Kobayashi ez al. [15], because
of the structural symmetry electromagnetic fields existing
in the resonator can be classified into two classes: i) fields
which have zero transverse electric fields in the symmetry
plane z = 0 (i.e., electric wall boundary condition at z = 0),
and ii) fields which have zero transverse magnetic fields in
the symmetry plane z =0 (ie., magnetic wall boundary
condition at z = 0).

The resonator structure is divided into three regions, 4,
B, and C as indicated in Fig. 1. Because of the symmetry,
only the fields in the region z > 0 will be considered in the
analysis that follows. In region A(L/2>=z=x=1/2), the
fields are expressed as a linear combination of the normal
TE and TM modes of the homogeneously filled circular
waveguide of radius b [19]. In region B(I//2 >z >0), the
fields are expressed as a linear combination of the hybrid,
TE or TM modes of the dielectric-loaded waveguide [1],
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Fig. 1. Dielectric-loaded resonator geometry.

[2]. To satisfy the boundary conditions that the transverse
electric and magnetic fields be continuous at the boundary
z=1/2, it is necessary that the angular variation of the
fields be the same in each of the regions 4 and B. This
implies that the resonator fields must belong to one of the
following three possible categories:

i)  transverse electric (TE) modes in both regions A4
and B with no angular variation of the fields;

ii) transverse magnetic (TM) modes in both regions 4
and B with no angular variation of the fields; or

iii) combination of TE and TM modes in region A,
and hybrid modes in region B. In both regions, all
modes must have the same angular variation (i.e.,
sin n¢ and cosne).

The transverse fields in each of the regions 4 and B
which satisfy the boundary conditions of zero tangential
electric fields at the end face z=L/2, and the zero
tangential electric field (electric wall boundary at z = 0) or
zero tangential magnetic field (magnetic wall boundary at
z =0) can be expressed as

(1a)
(1b)

E, = a;é,sinhy,(L/2-z)
J

H, = Zajizjcoshyj(L/2— z)
J

_ . [ —sinhT;z
Ep=Y 4, (1c)

coshT z
7 J
_ . cosh I‘Jz
Hy=YLAH| _Gon Tz (1d)
J

where v, ¢, and h |, are propagation constants, transverse
electric and magnetic fields of the normal TE and TM
modes in the homogeneously filled waveguide of radius b,
respectively; T, EJ, FIJ are propagation constants, trans-
verse electric and magnetic fields of the (hybrid)-modes in

the dielectric-loaded waveguide, respectively. The upper
and lower values in the equations (1c¢) and (1d) correspond
to electric and magnetic wall conditions in the symmetry
plane z = 0, respectively. Expressions for these fields and
the characteristic equation whose roots are the I',’s can be
found in [2]. All the modes in (1) have the same angular
variation, thus the summation on j is a single sum corre-
sponding to the various radial variations of the wave
numbers.

Expressions (1c) and (1d) are valid, since (it is conjec-
tured that) the hybrid-mode fields (Ej, IAIJ) form a com-
plete set over the dielectric-loaded waveguide’s cross sec-
tion. Although Clarricoats and Taylor [20] predicted the
existence of complex propagation constants I', for certain
combinations of the physical parameters of the dielectric-
loaded waveguide, in this paper, based on physical rea-
soning, that growing waves could not exist in a passive
structure, only purely real or purely imaginary roots of the
characteristic equation were sought and found in the
numerical solution. No attempts have been made to in-
vestigate the existence, or use of, the complex modes in the
field expansions. The boundary conditions to be satisfied
by the fields of (1) are that the transverse electric and
magnetic fields be continuous at z=1//2

E,=Ey; H,=H, atz=1/2. (2)

Taking the dot product of the electric-field equation with
é* and the magnetic-field equation with h¥ and integrat-
ing over the guide cross section S, using the orthogonality
properties of the normal waveguide modes [19], the follow-
ing set of homogeneous equations results:

J

C

7

(3a)

al<él’ ét>st = ZA]<EJ’él>
J

a,<fa,,f:,>c,=ZAj<I€c,fz,>( _‘;) (3b)
J

J
where

(al,ﬁj>='£ﬁj-ﬁj*ds

s,=sinhy,(L=1/2), §,=sinhT1/2

¢,=coshy,(L—1/2), C,=coshT,/2.

Closed-form expressions for the inner products in (3) are
given in the Appendix. The a,’s can be eliminated from
(3a) and (3b), leaving a homogeneous system of equations
in A’s only

ZijAjzo (4)
J
where
E9é, ) ﬁl,ill C
e W I A BT
/ <€l,€,> C'J <hl’ht> —SJ

The resonant frequencies of the structure are the roots of
the equation

det[X]=0

(6)
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where the element values of the matrix X ie., (X;)) are
given by (5). Numerical solution of (6) is accomplished by
truncating the infinite matrix X to finite size N=2p. The
modes are chosen as follows: for nonaxially symmetric
fields in region A, p-TE modes and p-TM modes, while in
region B, 2p hybrid modes. Thus, there will be 2p un-
knowns (4;)’s for the hybrid mode coefficients, and 2p
equations corresponding to the normal TE and TM modes.
For the case of no ¢-variation, p TE (or TM) modes are
chosen in region A and p TE (or TM) modes are chosen in
region B. Care{ul gxamination of the inner product terms
(E;,é;) and (H,, h;) given in the Appendix show that the
matrix elements in (5) are either real or imaginary depend-
ing on whether the region A waveguide modes or the
“dielectric-loaded (region B) waveguide modes are propa-
gating or cut off. The structure of the matrix is such that a
given row, or column, is either real or imaginary. Thus, by

proper multiplication of all the elements of certain rows .

(and columns) by j, the matrix can be transformed to a
real matrix without changing the value of its determinant.
This property has been exploited to advantage in eliminat-
ing the need to numerically calculate the value of complex
determinants, and only numerical calculations of real de-
terminants are needed.

1II. MODE CLASSIFICATION

Resonant modes in dielectric-loaded resonators are more

complicated to designate than in homogeneously filled -

resonators. Kobayashi [15] has proposed a mode designa-

tion that distinguishes the modes as EH and HE to iden-.

tify the nature of the hybrid modes as having strong axial
magnetic or electric fields, respectively. In this paper we
introduce a different but somewhat simpler scheme.

The modes will be designated as HEH,,, HEE,,,
TEH,,,, TEE,,, TMH,,,, or TME,,,. The first two letters
indicate whether the modes are hybrid (HE), transverse
electric (TE) or transverse magnetic (TM). The third letter
(E or H) indicates whether the symmetry plane z =0 is an
electric wall or magnetic wall, respectively. The first sub-
script » indicates the order of the angular or ¢ variation of
the fields (cos n¢ and sin n¢). Notice that n = 0 for all the
TE and TM modes. The second subscript m is the order of
the resonant frequency, m =1 being the lowest resonant of
the particular mode with angular variation cosn¢ and
sin n¢. Note that this designation does not indicate the
radial (r) nor the axial (z) field variations. It merely
orders the modes according to their resonant frequency.

This mode designation' scheme has several advantages .

that, to some degree, help in practical applications. As will
be seen in Section IV below, since generally no single
mode of the infinite dielectric-loaded waveguide dominates
the resonators field, it is apparent that there is no direct
correlation between the two. Furthermore, indication of
the type of symmetry in the mode designation helps in the
determination of the possible methods that could be used
in exciting the resonant mode in its symmetry plane (e.g.,
- an axial probe could not be used to excite an HEE mode at
the center of the resonator). Finally, it is noticed that the
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Fig. 2. Convergence test of resonant frequency as a function of matrix
size m. €, =35.74, a =034 in, /=03 in, b =0.57 in. (a) TEH,; mode.
(b) TEE,; mode. (c) TMH,; mode. (d) TME; mode. (¢) HEH,, mode.
(f) HEE,; mode.

commonly used third index (usually referred to as d) is not
needed in the present mode designation scheme. This is
because the ordering of the modes by the second subscript

© (m) in accordance with their frequency eliminates the need

for this third subscript.

IV. REesurts

A computer program for the calculation of the resonant
frequencies, mode coefficients, and field distribution in the
resonators was implemented. The program was tested and,
as shown later, verification of its results by extensive
experimental measurements on typical resonators showed
excellent agreement. _

Convergence of the results as a function of the matrix
size (N) (i.e., number of modes) was tested for various
modes and resonator parameters. Fig. 2 shows some results
of the convergence tests. The dielectric resonator used has
€, = 35.74, radius a =0.34 in and /= 0.3 in. The conduct-
ing enclosure has radius b= 0.51 in and its length L was
varied as the parameter (L //). Generally, the axially sym-
metric modes TEH,,,, TMH,,, TEE,, and TME,, have
the fastest convergence, requiring only 2 to 4 terms; the
HEH and HEE modes requiring 6 to 8 terms for conver-
gence. The convergence criterion employed in the compu-
tation is that the value of the resonant frequency changes
by less than 0.1 percent when the matrix size is increased
by two. These results are consistent with the trend found
by using the method described by Kobayashi [15]. For
small values of (b/a), considerably smaller number of
terms are required for convergence by the present method,
while for small values of (//L), Kobayashi’s method may
require comparable or smaller number of terms.

A mode chart for a representative resonator is shown in
Fig. 3. This chart gives the computed and measured reso-
nant frequencies shown as stars and triangles of various
modes as a function of the ratio (L /7). The measurements
were made using the same dielectric rod having €, = 35.74,
a=0.34 in, and /= 0.30 in, and six different enclosures all
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Fig. 4. Method of coupling to measure resonant frequencies of various
modes. (a) Coupling coaxial probe to radial electric field (¢,) TMH,,
and HEH,,,, modes. (b) Coupling coaxial probe to axial electric field
(H,) TME,,, and HEE, ,, modes. (c) Coupling coaxial probe to angular
electric field (E,) TEE,, and TEH;, modes.

with the same radius b= 0.51 in and variable lengths L.
The resonant frequency measurement and mode identifica-
tion was made by lightly coupling a coaxial probe located
at either the center or slightly offset from center, to the
radial, the axial, or the angular electric fields of the modes
as shown in Fig. 4. To ensure accuracy, the probe’s length
was adjusted so that at resonance, the input reflection
coefficient for the mode being measured was less than
—20 dB. With the exception of the HEH,, mode, all the
measured and computed results are within less than +0.5
percent from each other.
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(a) Dielectric-loaded region. (b) End regions.

The mode expansion coefficients in the dielectric-loaded
region (A4,’s) and in the end regions (a,’s) have been
computed by solving (N-1) equations of the homogeneous
system of (4) and normalizing the A4, coefficients such that

N
Y 4%2=1. (7a)
i=1

Although with this normalization the a,’s are uniquely
determined, in order to give indication of the relative
energy stored in the fields of the corresponding modes, the
a;’s have been renormalized independently such that

(7b)

Variation of 4? and a? with (L /) in resonators having
the same parameters as given above, and various resonant
modes are shown in Figs. 5-10. In the case of the HEH,,;
mode (Fig. 5(a)) for (L/!)=1, only one hybrid mode
(HE,;) of the dielectric-loaded waveguide exists in the
structure [3]. As the enclosure length is increased, other
dielectric-loaded waveguide modes are generated with the
coefficient of the hybrid HE,, mode increasing rapidly
until (L/!) = 2, where the HE,, mode accounts for about
70 percent of the total energy. For (L/I) >3, the HE,

N

2 A 5 —
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(a) Dielectric-loaded region. (b) End regions.

mode dominates the fields, with the HE;; mode account-
ing for about 20 percent of the resonator’s energy, and the
HE,, mode for slightly less than 10 percent. Both the HE;
and HE,, modes in the dielectric-loaded waveguide are
propagating modes at the resonant frequency of the reso-
nator. The HE,; mode is cutoff. The mode expansion

coefficients in the end regions shown in Fig. 5(b) have the
TE,, mode dominating for (L//) > 3. For smaller values
of (L /1), significant contents of the TM,;, TE,, and TE;
modes are present in addition to the TE,; mode. Fig. 6(a)
and (b) give the mode expansion coefficients for the HEE,;
resonant mode. In the dielectric-loaded region when (L/1)
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Fig. 10. Mode expansion coefficients for HEE,; resonant mode.
(a) Dielectric-loaded region. (b) End regions.

=1, only the HE,, dielectric-loaded waveguide mode is
excited. As (L /]) is increased, the HE,, mode coefficients
reduce very rapidly, while the HE,; and HE,, mode
coefficients dominate, peaking at about (L //) =1.35. These
modes start to decay as (L /) increases further, with the
HE,; mode dominating for (L//)> 3. In the homoge-
neously filled end regions, the TE;; mode coefficient
rapidly becomes dominant as (L /I) becomes greater than
about 2, as seen in Fig. 6(b). Variation of the mode
expansion coefficients for the HEH,,, HEE,,, HEH,,, and
HEE,; resonant modes with (L//) are shown in Figs
7-10, respectively. As seen from these figures, the general
behavior of the mode expansion is similar to that described
above for the HEH,; and HEE,; resonant modes, i.e., for
small values of (L/I), generally a large number of wave-
guide modes is needed to represent the resonant fields, but
for larger values of (L /I), the mode coefficients stabilize
with one waveguide mode dominating.

V. FieLb COMPUTATION AND PLOTTING

The methods of numerical computation and plotting of
the fields are extensions of the procedures in [2]. For a
given resonant mode, the resonant frequency and expan-

sion coefficients of the fields in terms of the normal
waveguide modes are computed as described above. The
angular variation of the fields in any cross section of the
resonator has the same functional form (i.e. cosn¢ and
sin n¢ for the HEH,,, and HEE,,, modes). Consequently,
each of the radial and angular components of the fields
(E,, H,, E,, and H,) are expressible as the product of two
functions: One is a function of » only, and the other is a
function of ¢ only

E.=e(r)sinng
E,=e,(r)cosng

H,=h,(r)cosne
H,=h,(r)sinné.

(8)
©)

The functions e (r), e,(r), h(r), and h,(r) are linear
combinations of the modal functions existing in infinite
dielectric-loaded (hybrid modes) or homogeneously filled
waveguide (TE and TM modes), in the corresponding
regions of the resonator, respectively. The resonant
frequency and coefficients of the modes are obtained by
solving for the roots of the determinant of a homogeneous
set of linear equations (6). For efficient numerical evalua-
tion of the fields, rather than computing four two-dimen-
sional arrays for the values of the field components at a
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Fig. 14. Magnetic fields for HEH;, mode at z = L /2.

grid of points (r,, ¢,;) of the resonator cross section, only
four one-dimensional arrays of the values of the functions
e, (r), ey(r), h(r), and h,(r) are computed and stored
for a prescribed set of points (#,) of the variable r. These
values are subsequently used with (8) and (9) to find the
fields at any point in the resonator’s cross section. Electric-
and magnetic-field plots are generated using.the method
described in [2] and [21]. :
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Extensive computations were carried out to find the
field distributions and intensity in dielectric-loaded reso- -
nators (for the first few lowest order modes). Results of
these computations are presented in this section. The fields
are computed and presented in two cross-sectional planes
of the resonators: in the middle cross section (z = 0) and
in the end plane (z = L /2). In the resonator’s center plane
(z = 0), the transverse electric-field distributions are com-
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Fig. 20. Magnetic fields for HEE,, mode at z=L/2.

puted and presented for the HEH, TMH, and TEH modes
(i.e., magnetic .wall boundary condition), since for these
modes the transverse magnetic fields vanish at z = 0. Simi-
larly, the transverse magnetic fields are computed and
presented in the plane z = 0 for the HEE, TME, and TEE
modes (i.e., electric wall boundary condition), since for
these modes the transverse electric fields are zero. On the
end plane (z = L/2), the tangential electric fields vanish
for all the modes, and hence only magnetic-field distribu-
tions are presented. The field plots are shown in Figs.
11-22. The common parameters used to generate these
plots are

relative dielectric constant of the resonator-¢, = 35.74,
radius of the conducting enclosure b = 0.57 in,

radius of the dielectric resonator a =0.34 in,

length of the dielectric resonator /= 0.300 in.

In each of the figures, the effect of varying the enclosure
length L on the field distributions is shown by displaying
these distributions for four different values of the ratio
(L/1)ie., (L/1)=1.01, 1.2, 2.0, and 4.0. The field inten-
sity (i.e., the functions e,, e,, h,, and h, of (9) and (10))
are shown as a function of r. The field lines in the
resonator’s cross section are shown only for the nonaxially
symmetric modes (i.c, HEH and HEE modes), since for
the TE and TM modes these field lines consist of circles
and radii. :

The general behavior of the field distributions can be
qualitatively described by considering the variation of the
mode expansion coefficients presented in Section IV, as a
function of (L /I). For values of (L /!) very close to unity
(L/1=1.01), the fields in the resonator’s section very
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Fig. 21. Magnetic fields for HEE,, mode at z=0.
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Fig. 22. Magnetic fields for HEE,; mode at z =L /2.

closely resemble the fields of a single mode existing in an
infinite dielectric-loaded waveguide [2]. This is seen, for
example in Figs. 11, 13, and 15 where the electric-field
distributions for (L/I)=1.01 cases are identical in shape
to the HE,;, HE,, and HE,; waveguide hybrid mode
fields; respectively. For a slight increase in the value of
(L/1), the field structure in the center of the resonator
changes rapidly. Significant contents of the other dielec-
tric-loaded waveguide hybrid modes start to be generated,
resulting in a dramatic change in the composite field
distributions from the initial shape. Further increase in the
ratio (L /1) results in a “stabilization” of the fields with a
single hybrid waveguide mode dominating. This mode is
generally different from the initial mode that existed for
(L /1) ratio close to unity. This “transitional mode” effect
is again seen, for example, in Figs. 11, 13, and 15, as the
(L /1) ratio increases from 1.2 to 2 to 4, the initial field
distributions of the hybrid mode fields HE,;, HE,,, and
HE,, tend to the final distributions of the hybrid mode
fields HE,,, HE,,, and HE,,, respectively, In the homoge-
neously filled end regions for values of (L//) =1.01, the
magnetic fields in the end plane z = L /2 have a relatively
large number of the normal waveguide modes (TE and
TM). As (L /1) is increased, some of these modes become
less pronounced and the end region fields tend to a single
dominating normal mode. This is seen in Figs 12, 14, and
16 where the magnetic field lines in the end planes z = L /2
are shown for various values of (L/!) for the HEH;,,
HEH,,, and HEH,;, modes, respectively. Clearly for (L /1)
=1.01, 1.2, and 2, no single mode is dominant as can be
seen from the field lines. For (L //) =4, these magnetic
fields have the same distribution as TE,,, TE,;, and TE,,
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normal modes in the homogeneously filled waveguide,
respectively.

The field distributions for HEE modes generally behave
in a similar way to that described above for the HEH
modes, except that in the center z = 0, the magnetic fields
appear to be less sensitive to variations in the ratio (L /I).
This can be seen from Figs. 17, 19, and 21 which show
magnetic-field distribution in the plane z=0 for the
HEE,,, HEE,,, and HEE,; modes, respectively. Fields in
the end plane z = L/2 for these modes are shown in Figs.
18, 20, and 22, and for large values of (L/I), the field
distributions tend to the TE,;, TE,;, and TE,; modes for
the homogeneously filled waveguide, respectively.

VI. CONCLUSIONS AND DISCUSSIONS

The method of analysis presented in this paper leads to
the complete accurate determination of the fields and
resonant frequencies of dielectric-loaded resonators. Com-
pared to the method developed by Kobayashi [15], the
present method has much faster convergence properties for
small (b/a), and gives a representation of the fields in the
resonator in terms of dielectric loaded or homogeneously
filled identifiable waveguide modes. The mode designation
scheme proposed in this paper is a simple and logical way
of identifying the various resonances, and gives useful
insight into the physical structure of the fields, which in
turn helps in practical application of this type of reso-
nators. The mode coefficients indicate that for practical
resonator dimensions no single dielectric waveguide mode
is dominant. Experimental results of the resonators mode
chart showed excellent agreement with the calculations.

The field plots presented are useful qualitative tools that
pictorially display the field structures for the resonant
modes in dielectric-loaded resonators. They can help in the
design of devices using these types of resonators by indi-
cating locations of strong fields, their directions, etc.

It is seen that the spacing between the conducting
enclosure’s end planes and the dielectric material (or the
ratio L/I) has a pronounced effect on the mode contents
of the fields. When this ratio is large, the field distributions
in the dielectric-loaded region and in the homogeneously
filled end regions are representable by a single mode of the
corresponding waveguide. Magnetic-field distributions in
the end planes of the enclosure provide useful information
on how to couple two such resonators together or excite
the required modes.

APPENDIX
ANALYTIC EXPRESSIONS FOR THE INNER PRODUCTS

In the following expressions, k_ represents the cutoff
wavenumbers of either a TE or TM mode in a circular
waveguide of radius b and full of a dielectric material of
relative permittivity e, T'yg_are roots of the characteristic
equation for an 1nf1mte length dielectric-loaded waveguide.
Equation (13) in [2], P, and R, are defined by (10) and

823
(11) of [2].
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