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..4Mruct —Analysis of cylindrical dielectric-loaded resonators is re-
viewed.The fieldi within the dielectric-loaded region are postulated as the

superposition of hybrid, ‘III, or TM modes of the itilnite dielectric-loaded

waveguide, while the fields in the end regions of the resonators are

deseribed by the superposition of the normaf modes of a homogeneously

filled waveguide. Numerical results are pres@ed which reveaf that accu-

rate representation of the fields in the resonant structure generafly require

severaf modes. Hence, the resonant modes cannot be correlated direetly

wi@ single waveguide modes. A new method for mode identification is

proposed. For a wide range of parameters, the resonant frequencies, mbde

charts, field expansion coefficients, field intensity, and distributions are

presented. Excellent agreement of me mode charts with resonant frequency

measurement results are obtained.

I. INTRODUCTION

T HE PURPOSE OF this paper is to review and extend

the analysis method described in [1]–[3], and present

new numerical results and extensive measured data for the

verification of the analysis.

The continuing interest in dielectric resonators for appli-

cations in microwave and millimeter-wave systems

prompted many researchers to develop and refine analysis

methods for the design of such resonators. Modes in

isolated resonators with no metallic boundaries have been

analyzed extensively using the approxiinate technique of

magnetic wall on all or portions of the resonator’s surface

[4], [7]. This technique is valid in the liqit as the relative

dielectric constant of the material approaches infinity. For

waveguides and resonators with metallic boundaries, exact

closed-form solution methods have been presented for

certain geometries [2], [3]; variational and perturbation

techniques [8]–[10] have also been used extensively

whenever the geometry did not allow closed-form solutions

to be developed. Other analysis methods based on field

expansions in term of eigenmodes of the resonators and

enclosures [1], [11]–[16] and on surface integral equations

[17] -[18] have recently been developed.

The method of analysis for accurate determination of

the resonant frequencies and field distributions within a

circular cylindrical dielectric resonator shielded by a coaxial

circular conducting boundary is summarized in Section II.

Symmetry conditions are employed to reduce the size of

the determinant whose roots are the resonant frequencies
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by a factor of two. Since the fields in the resonator are

expressed as a linear combination of several eigenmodes of

the dielectric-loaded waveguide, and no single mode is

dominant,’ designation of the resonant frequencies of the

structure cannot be directly correlated yvith any single

waveguide mode. A method for the designation of the

resonant frequencies is proposed in Section 111.

Extensive numerical results showing the convergence of

the solution and “mode charts” for typical resonators are

included in Section IV. Mode charts are verified exten-

sively by measurements on several experimental reso-

nators. Variation of the mode coefficients in the dielectric-

loaded waveguide and end sections as a function of the

resonator parameters we presented.

Section V presents results of several representative plots

of the resonator’s field distribution and intensity.

II. METHOD OF ANALYSIS

The resonator structure is shown in Fig. 1. The metallic

cavity of radius b md length L has perfectly conducting

walls. The dielectric cylinder of radius a, relative dielectric

constant c,1, and length 1 is placed symmetrically within

the cavity, and is supported by concentric rings of a, low

relative dielectric constant material <,2 (e.g.,” foam). This

support can be conveniently made as two half-cups, be:

tween which the resonator is enclosed. Alternatively, the

end supports can be of different dielectric constant material

c,3. Extensive analysis and numerical results of this struc-

ture in the special case of 1= L were presented in [3].

Following the reasoning by Kobayashi et al, [15], because

of the structural symmetry electromagnetic fields existing

in the resonator can be classified into two classes: i) fields

which have zero transverse electric fields in the symmetry

plane z = O (i.e., electric wall boundary condition at z = O),

and ii) fields which have zero transverse magnetic fields in

the symmetry plane z = O (i.e., magnetic wall boundary

condition at z = O).

The resonator structure is divided into three regions, A,

B, and C as indicated in Fig. 1. Because of the symmletry,

only the fields in the region z >0 will be considered in the

analysis that follows. In region A( L/2 > z > 1/2), the

fields are expressed as a linear combination of the normal

TE and TM modes of the homogeneously filled circular

waveguide of radius b [19]. In region l?(l/2 > z > O]I, the

fields are expressed as a linear combination of the hybrid,

TE or TM modes of the dielectric-loaded waveguide [1],
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816 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 7, JULY 1986

2

/2

nlnletry mine)

2

[2

/’1 I
M.tallic camity /

I

@

,.

lb

Fig. 1. Dielectric-loaded resonator geometry.

[2]. To satisfy the boundary conditions that the transverse

electric and magnetic fields be continuous at the boundary

z = 1/2, it is necessary that the angular variation of the

fields be the same in each of the regions A and B. This

implies that the resonator fields must belong to one of the

following three possible categories:

i)

ii)

iii)

The

which

transverse electric (TE) modes in both regions A

and B with no angular variation of the fields;

transverse magnetic (TM) modes in both regions A

and B with no angular variation of the fields; or

combination of TE and TM modes in region A,

and hybrid modes in region B. In both regions, all

modes must have the same angular variation (i.e.,

sin n~ and cos n@).

transverse fields in each of the regions A and B

satisfy the boundary conditions of zero tangential

electric fields at the end face z = L/2, and the zero

tangential electric field (electric wall boundary at z = O) or

zero tangential magnetic field (magnetic wall boundary at

z = O) can be expressed as

EA= ~aj2jsinhyJ(L/2– Z) (la)

j

fi~ = ~aj~jcoshyj(L/2 – z) (lb)

1

()

– sinh Tjz
~~=~AJij

J
cosh r, z

M

cosh r, z

‘B= EAJBJ – sinh r z
J J

(lC)

(id)

where yJ, $J, and h]A are propagation constants, transverse

electric and magnetic fields of the normal TE and TM

modes in the homogeneously filled waveguide of radius b,

respectively; r,, i2J,h, are propagation constants, trans-

verse electric and magnetic fields of the (hybrid) modes in

the dielectric-loaded waveguide, respectively. The upper

and lower values in the equations (lc) and (id) correspond

to electric and magnetic wall conditions in the symmetry

plane z = O, respectively. Expressions for these fields and

the characteristic equation whose roots are the I’,’s can be

found in [2]. All the modes in (1) have the same angular

variation, thus the summation on j is a single sum corre-

sponding to the various radial variations of the wave

numbers.

Expressions (lc) and (id) are vali~, si;ce (it is conjec-

tured that) the hybrid-mode fields ( EJ, IIj ) form a com-

plete set over the dielectric-loaded waveguide’s cross sec-

tion. Although Clarricoats and Taylor [20] predicted the

existence of complex propagation constants ry for certain

combinations of the physical parameters of the dielectric-

loaded waveguide, in this paper, based on physical rea-

soning, that growing waves could not exist in a passive

structure, only purely real or purely imaginary roots of the

characteristic equation were sought and found in the

numerical solution. No attempts have been made to in-

vestigate the existence, or use of, the complex modes in the

field expansions. The boundary conditions to be satisfied

by the fields of (1) are that the transverse electric and

magnetic fields be continuous at z = 1/2

i7A=EB; HA=i7B at z = 1/2. (2)

Taking the dot product of the electric-fie~d equation with

.?,* and the magnetic-field equation with h ~ and integrat-

ing over the guide cross section S, using the orthogonality

properties of the normal waveguide modes [19], the follow-

ing set of homogeneous equations results:

where

s, = sinhy, ( L – 1/2), S’ = sinh 1“1/2

c, = coshy, ( L – l/2), CJ= cosh 17J1/2.

Closed-form expressions for the inner products in (3) are

given in the Appendix. The a,’s can be eliminated from

(3a) and (3b), leaving a homogeneous system of equations

in Al’s only

~X,jAj = O (4)

J

where

The resonant frequencies of the structure are the roots of

the equation

det[X]=O (6)
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where the element values of the matrix X i.e., (Xij) are

given by (5). Numerical solution of (6) is accomplished by

truncating the infinite matrix X to finite size N= 2;. The

modes are chosen as follows: for nonaxially symmetric

fields in region A, p-TE modes and p-TM modes, while in

region B, 2p hybrid modes. Thus, there will be 2p un-

knowns (Aj)’s for the hybrid mode coefficients, and 2p

equations corresponding to the normal TE and TM modes,

For the case of no @variation, p TE (or TM) modes are

chosen in region A and p TE (or TM) modes are chosen in

region B. Care;ul ~xamination of the inner product terms

{Ej, @i) ~d {Hj, h,) given in the Appendix show that the
matrix elements in (5) are either real or imaginary depend-

ing on whether the region A waveguide modes or the

dielectric-loaded (region B) waveguide modes are propa-

gating or cut off. The structure of the matrix is such that a

given row, or column, is either real or imaginary. Thus, by

proper multiplication of all the elements of certain rows

(and columns) by j, the matrix can be transformed to a

real matrix without changing the value of its determinant.

This property has been exploited to advantage in eliminat-

ing the need to numerically calculate the value of complex

determinants, and only numerical calculations of real de-

terminants are needed.

III. MODE CLASSIFICATION

Resonant modes in dielectric-loaded resonators are more

complicated to designate than in homogeneously filled

resonators. Kobayashi [15] has proposed a mode designa-

tion that distinguishes the modes as EH and HE to iden-

tify the nature of the hybrid modes as having strong axial

magnetic or electric fields, respectively. In this paper we

introduce a different but somewhat simpler scheme.

The” modes will be designated as HEHtiW, HEE.W,

TEHO~, TEEO~, TMHO~, or TMEO&. The first two letters

indicate whether the modes are hybrid (HE), transverse

electric (TE) or transverse magnetic (TM). The third letter

(E or H) indicates whether the symmetry plane z = O is an

electric wall or magnetic wall, respectively. The first sub-

script n indicates the order of the angular or @variation of

the fields (COSn$ and sin n+). Notice that n = O for all the

TE and TM modes. The second subscript m is the order of

the resonant frequency, m = 1 being the lowest resonant of

the particular mode with angular variation cos m) and

sin n@ Note that this designation does not indicate the

radial (r) nor the axial (z) field variations. It merely

orders the modes according to their resonant frequency.

This mode designation scheme has several advantages

that, to some degree, help in practical applications. As will

be seen in Section IV below, since generally no single

mode of the infinite dielectric-loaded waveguide dominates

the resonators field, it is apparent that there is no direct

correlation between the two. Furthermore, indication of

the type of symmetry in the mode designation helps in the

determination of the possible methods that could be used

in exciting the resonant mode in its symmetry plane (e.g.,

an axial probe could not be used to excite an HEE mode at

the center of the resonator). Finally, it is noticed that the
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Fig. 2. Convergence test of resonant frequency as a function of matrix

size m. (,1 = 35.74, u = 0.34 in, 1= 0.3 in, b = 0.57 in. (a) TEHOI mode.

(b) TEEOI mode. (c) TMHOI mode. (d) TMEOI mode. (e) HEHII mode.
(f) HEEII mode.

commonly used third index (usually referred to as ~) is not

needed in the present mode designation scheme. This is

because the ordering of the modes by the second subscript

(m) in accordance with their frequency eliminates the need

for this third subscript.

IV. RESULTS

A computer program for the calculation of the resonant

frequencies, mode coefficients, and field distribution in the

resonators was implemented. The program was tested and,

as shown later, verification of its results by extensive

experimental measurements on typical resonators showed

excellent agreement.

Convergence of the results as a function of the matrix

size (N) (i.e., number of modes) was tested for various

modes and resonator parameters. Fig. 2 shows some results

of the convergence tests. The dielectric resonator used has

e = 35.74, radius a = 0.34 in and 1= 0.3 in. The condluct-

i~g enclosure has radius b = 0.51 in and its length L was

varied as the parameter (L/l). Generally, the axially sym-

metric modes TEHO., TMHO., TEEO~, and TMEO. have

the fastest convergence, requiring only 2 to 4 terms; the

HEH and HEE modes ‘requiring 6 to 8 terms for corwer-

gence. The convergence criterion employed in the compu-

tation is that the value of the resonant frequency changes

by less than 0.1 percent when the matrix size is increased,

by two. These results are consistent with the trend found

by using the method described by Kobayashi [15]. For

small values of (b/a), considerably smaller number of

terms are required for convergence by the present method,

while for small values of (l/L), Kobayashi’s method may

require comparable or smaller number of terms.
A mode chart for a representative resonator is shown in

Fig. 3. This chart gives the computed and measured reso-

nant frequencies shown as stars and triangles of various

modes as a function of the ratio (L/l). The measurements

were made using the same dielectric rod having c,, = 35.74,

a = 0.34 in, and 1= 0.30 in, and six different enclosures all
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Fig. 4. Method of coupling to measure resonant frequencies of various
modes. (a) Coupling coaxial probe to radial electric field (e, ) TMHO.
and HEH.n modes. (b) Coupling coaxial probe to axial electric field
( Hz) TMEO,, and HEE.~ modes. (c) Coupling coaxial probe to angular
electric field (E+ ) TEEO. and THIon modes.

with the same radius b = 0.51 in and variable lengths L.

The resonant frequency measurement and mode identifica-

tion was made by lightly coupling a coaxial probe located

at either the center or slightly offset from center, to the

radial, the axial, or the angular electric fields of the modes

as shown in Fig. 4. To ensure accuracy, the probe’s length
was adjusted so that at resonance, the input reflection

coefficient for the mode being measured was less than
– 20 dB. With the exception of the HEH12 mode, all the

measured and computed results are within less than +0.5

percent from each other.
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Fig. 5. Mode expansion coefficients for HEHII resonant mode.

(a) Dielectric-loaded region. (b) End regions.

The mode expansion coefficients in the dielectric-loaded

region (A i ‘s) and in the end regions (ai’s) have been

computed by solving (N-1) equations of the homogeneous

system of (4) and normalizing the Ai, coefficients such that

N

~Af=l. (7a)
i-l

Although with this normalization the ai’s are uniquely

determined, in order to give indication of the relative

energy stored in the fields of the corresponding modes, the

ai’s have been renormalized independently such that

N

1=1

Variation of A! and a; with (L/1) in resonators having

the same parameters as given above, and various resonant

modes are shown in Figs. 5–10. In the case of the HEHII

mode (Fig. 5(a)) for (L/l ) =1, only one hybrid mode

(HEII) of the dielectric-loaded waveguide exists in the

structure [3]. As the enclosure length is increased, other

dielectric-loaded waveguide modes are generated with the

coefficient of the hybrid HEIZ mode increasing rapidly

until (L/l ) = 2, where the HE12 mode accounts for about

70 percent of the total energy. For (L/1)> 3, the HEIZ
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End regions.

(L/t)

mode dominates the fields, with the HE13 mode account- coefficients in the end regions shown in Fig. 5(b) have the

ing for about 20 percent of the resonator’s energy, and the TEII mode dominating for (L/1) >3. For smaller values

HEII mode for slightly less than 10 percent. Both the HEII of (L/1), significant contents of the TM1l, TE12, and TEIS

and HE12 modes in the dielectric-loaded waveguide are modes are present in addition to the TE1l mode. Fig 6(a)

propagating modes at the resonant frequency of the reso- and (b) give the mode expansion coefficients for the HEEI1

nator. The HElq mode is cutoff. The mode expansion resonant mode. In the dielectric-loaded region when ( L/l )
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Fig. 10. Mode expansion coefficients for HEE21 resonant
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=1, only the HE12 dielectric-loaded waveguide mode is

excited. As (L/1) is increased, the HE12 mode coefficients

reduce very rapidly, while the HE13 and HEld mode

coefficients dominate, peaking at about ( L/l ) =1.35. These

modes start to decay as (L/1) increases further, with the

HEII mode dominating for (L/i)> 3. In the homoge-

neously filled end regions, the TEII mode coefficient

rapidly becomes dominant as (L/l) becomes greater than

about 2, as seen in Fig. 6(b). Variation of the mode

expansion coefficients for the HEH12, HEE12, HEH21, and

HEE21 resonant modes with (~/1) are shown in Figs

7–10, respectively. As seen from these figures, the general

behavior of the mode expansion is similar to that described

above for the HEH1l and HEE1l resonant modes, i.e., for

small values of (L/l), generally a large number of wave-

guide modes is needed to represent the resonant fields, but

for larger values of (L/1), the mode coefficients stabilize

with one waveguide mode dominating.

V. FIELD COMPUTATION AND PLOT’TING

The methods of numerical computation and plotting of

the fields are extensions of the procedures in [2]. For a

given resonant mode, the resonant frequency and expan-

sion coefficients of

,456

(b)

mode.

(L/&!)

the fields in terms of the normal

waveguide modes are computed as described above. The

angular variation of the fields in any cross section of the

resonator has the same functional form (i.e. cos n$ and

sin no for the HEH.~ and HEE.~ modes). Consequently,

each of the radial and angular components of the fields

(E,, H?, E+, and H.J are expressible as the product of two
functions: One is a function of r only, and the other is a

function of @ only

E.= er(r)sin no H,=h,(r)cosnq$ (8)

E4=e+(r)cosn@ Ho=h+(r)sinn+. (9)

The functions e,(r), e+(r), h,(r), and ho(r) are linear

combinations of the modal functions existing in infinite

dielectric-loaded (hybrid modes) or homogeneously filled

waveguide (TE and TM modes), in the corresponding

regions of the resonator, respectively. The resonant

frequency and coefficients of the modes are obtained by

solving for the roots of the determinant of a homogeneous

set of linear equations (6). For efficient numerical evalua-

tion of the fields, rather than computing four two-dimen-

sional arrays for the values of the field components at a
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Fig. 11. Electric fields for HEHII mode at z = O.

Fig. 12. Magnetic fields for HEHII mode at z = L/2

Fig. 14. Magnetic fields for HEH12 mode at z = L/2.

grid of points (ri, @i) of the resonator cross section, only

four one-dimensional arrays of the values of the functions

e,(r), e+(r), h,(r), and h+(r) are computed and stored
for a prescribed set of points (ri) of the variable r. These

values are subsequently used with (8) and (9) to find the

fields at any point in the resonator’s cross section. Electric-

and magnetic-field plots are generated using. the method

described in [2] and [21].

+-l.,, +-,, —- +, +. . . . ..

Fig. 15. Electric fields for HEH21 mode at z = O.

t-,- W .~ +-, i-

Fig. 17. Magnetic fields for HEEII mode at z = O.

+-..1 +-1.* .<
*- 4-,

Fig. 18, Magnetic fields for HEEII mode at z = L/2,

Extensive computations were carried out to find. the

field distributions and intensity in dielectric-loaded reso-
nators (for the first few lowest order modes). Results of

these computations are presented in this section. The fields

are computed and presented in two cross-sectional pllanes

of the resonators: in the middle cross section (z= O) and

in the end plane (z = L/2). In the resonator’s center plane

(z= O), the transverse electric-field distributions are com-
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Fig. 20. Magnetic fields for HEE12 mode at z = L/2.

puted and presented for the HEH, TMH, and TEH modes

(i.e., magnetic wall boundary condition), since for these

modes the transverse magnetic fields vanish at z = O. Simi-

larly, the transverse magnetic fields are computed and

presented in the plane z = O for the HEE, TME, and TEE

modes (i.e., electric wall boundary condition), since for

these modes the transverse electric fields are zero. On the

end plane (z = L/2), the tangential electric fields vanish

for all the modes, and hence only magnetic-field distribu-

tions are presented. The field plots are shown in Figs.

11–22. The common parameters used to generate these

plots are

relative dielectric constant of the resonator-c~, = 35.74,

radius of the conducting enclosure b = 0.57 m,

radius of the dielectric resonator a = 0.34 in,

length of the dielectric resonator 1= 0.300 in.

In each of the figures, the effect of varying the enclosure

length L on the field distributions is shown by displaying

these distributions for four different values of the ratio
(L/l) i.e., (L/1) = 1.01, 1.2, 2.0, and 4.0. The field inten-

sity (i.e., the functions e,, e+, h,, and h ~ of (9) and (10))

are shown as a function of r. The field lines in the

resonator’s cross section are shown only for the nonaxially

symmetric modes (i.e., HEH and HEE modes), since for

the TE and TM modes these field lines consist of circles

and radii.

The general behavior of the field distributions can be

qualitatively described by considering the variation of the

mode expansion coefficients presented in Section IV, as a

function of (L/1). For values of (L/1) very close to unity

(L/1 =1.01), the fields in the resonator’s section very

Fig. 21. Magnetic fields for HEE21 mode at z = O

t-~~, +-,, 2 +-% +-

Fig. 22. Magnetic fields for HEE21 mode at z = L/2.

closely resemble the fields of a single mode existing in an

infinite dielectric-loaded waveguide [2]. This is seen, for

example in Figs. 11, 13, and 15 where the electric-field

distributions for (L/1) = 1.01 cases are identical in shape

to the HEII, HEIZ and HEZI waveguide hybrid mode

fields; respectively. For a slight increase in the value of

(L/1), the field structure in the center of the resonator

changes rapidly. Significant contents of the other dielec-

tric-loaded waveguide hybrid modes start to be generated,

resulting in a dramatic change in the composite field

distributions from the initial shape. Further increase in the

ratio (L/l ) results in a “stabilization” of the fields with a

single hybrid waveguide mode dominating. This mode is

generally different from the initial mode that existed for

(L/1) ratio close to unity. This “transitional mode” effect

is again seen, for example, in Figs. 11, 13, and 15, as the

(L/1) ratio increases from 1.2 to 2 to 4, the initial field

distributions of the hybrid mode fields HEII, HEIZ, and

HEZI tend to the final distributions of the hybrid mode

fields HE12, HElg, and HEZZ, respectively, In the homogen-
eously filled end regions for values of (L/l) = 1.01, the

magnetic fields in the end plane z = L/2 have a relatively

large number of the normal waveguide modes (TE and

TM). As (L/l) is increased, some of these modes become

less pronounced and the end region fields tend to a single

dominating normal mode. This is seen in Figs 12, 14, and

16 where the magnetic field lines in the end planes z = L/2

are shown for various values of (L/l) for the EtEHll,

HEHIZ, and HEHZI modes, respectively. Clearly for (L/1)

= 1.01, 1.2, and 2, no single mode is dominant as can be

seen from the field lines. For (L/l ) = 4, these magnetic

fields have the same distribution as TEII, TEII, and TEZI
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normal modes in the homogeneously filled waveguide,

respectively.

The field distributions for HEE modes generally behave

in a similar way to that described above for the HEH

modes, except that in the center z = O, the magnetic fields

appear to be less sensitive to variations in the ratio (L/1).

This can be seen from Figs. 17, 19, and 21 which show

magnetic-field distribution in the plane z = O for the

HEEII, HEE12, and HEEZI modes, respectively. Fields in

the end plane z = L/2 for these modes are shown in Figs.

18, 20, and 22, and for large values of (L/1), the field

distributions tend to the TEII, TEII, and TEZI modes for

the homogeneously filled waveguide, respectively.

VI. CONCLUSIONS AND DISCUSSIONS

The method of analysis presented in this paper leads to

the complete accurate determination of the fields and

resonant frequencies of dielectric-loaded resonators. Com-

pared to the method developed by Kobayashi [15], the

present method has much faster convergence properties for

small (b/a ), and gives a representation of the fields in the

resonator in terms of dielectric loaded or homogeneously

filled identifiable waveguide modes. The mode designation

scheme proposed in this paper is a simple an,d logical way

of identifying the various resonances, and gives useful

insight into the physical structure of the fields, which in

turn helps in practical application of this type of reso-

nators. The mode coefficients indicate that for practical

resonator dimensions no single dielectric waveguide mode

is dominant. Experimental results of the resonators mode

chart showed excellent agreement with the calculations.

The field plots presented are useful qualitative tools that

pictorially display the field structures for the resonant

modes in dielectric-loaded resonators. They can help in the

design of devices using these types of resonators by indi-

cating locations of strong fields, their directions, etc.

It is seen that the spacing between the conducting

enclosure’s end planes and the dielectric material (or the

ratio L/l ) has a pronounced effect on the mode contents

of the fields. When this ratio is large, the field distributions

in the dielectric-loaded region and in the homogeneously

filled end regions are representable by a single mode of the

corresponding waveguide. Magnetic-field distributions in

the end planes of the enclosure provide useful information

on how to couple two such resonators together or excite

the required modes.

APPENDIX

ANALYTIC EXPIWSSIONS FOR THE INNER PRODUCTS

In the following expressions, k= represents the cutoff

wavenumbers of either a TE or TM mode in a circular

waveguide of radius b and full of a dielectric material of

relative permittivity ~,~, r~~, are roots of the characteristic

equation for an infn-nte length dielectric-loaded waveguide.

Equation (13) in [2], P. and R. are defined by (10) and

(11) of [2]4

(~TE,, ~TE,) k~(B+c)

(ZTE,, GTE,) = z~q

(fir~,,lr~,) k:r~~, (B+C)
.—

(&TE,,iTE,) YTE, lTEJ

k:I’T~ (B+D){kTM,Y ‘TM,) _ ,

(;TMj~ZTy) I’TM, ITM,

(.l?TM, , 2TM,) k: (CIB + t2D)
—

kCb)

k:b2 k:b2
I TM, = —J;_l(kCb) = ~J;2(k.b)

2

A=n
()

; + ; J~(fla)Jn(kCa)

‘=i[’l(l++)Jn(kca)J’(’la)

[;kc
– —J;(kCa)Jn(&a)

k: – ~; 1
c=#+-+dJn(kcal;k.

—J’(kCa)J. (&a)
k:+{; n 1

D=i )

a t;

t;
- — J.(kCa)R4(fza)

k:+l;

+ l:k.

1
—J’(kCa)J. (&a) .
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